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Abstract 

We show that if A is a graded connected Hopf algebra over a field of characteristic 0, such 

that all homogeneous elements of strictly positive degree are nilpotent. then A is commutative 

and cocommutative. Hence A is an exterior algebra over the primitive elements. @ 1999 Elsevier 

Science B.V. All rights reserved. 

Nous montrons que si A est une algbbre de Hopf grad&e connexe sur un corps commutatif 

de caractkistiquc nullc, oh tout Cltment homogknc dc dcgr6 strictcmcnt positif cst nilpotent, 

alors A est commutative et cocommutative, par suite A est I’algkbre extkrieure sur ses klkments 

primitifs. @ 1999 Elsevier Science B.V. All rights reserved. 

CI~I.X.: lSA75; lhD70; lhW30; 16W.50 

0. Introduction 

Let A be a graded connected Hopf algebra over a field of characteristic zero. All the 

examples we know of such algebras of finite dimension arc commutative and cocom- 

mutative; thus by [6] they are exterior algebras over the primitive part. For example, if 

q is a semi-simple Lie algebra, then the homology H*(y) of Q with trivial coefficients 

is known to be an exterior algebra over generators of odd degrees [3]. Other examples 

are given as follows. Let B be a commutative algebra (with unit) and y/,(B) the 

Lie algebra of infinite order matrices with entries in B but with only a finite num- 

ber of non-zero terms. Then H*(QI,(B)) IS isomorphic to the graded exterior algebra 

over HC*_,(B), the cyclic homology of B [.5]. An analogous example is given by 
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H*(o,(B)) and H*(.sp,(B)), where o, and sp Ix designate the orthogonal and sym- 

plectic Lie algebras respectively. In these cases, the cyclic homology is replaced by the 

dihedral homology HD*_,(B) of B [5]. Note that in the three last examples, we obtain 

connected graded Hopf algebras of infinite dimension which are also commutative and 

cocommutative. 

It is thus natural to ask whether there exists an example of a graded connected 

finite-dimensional Hopf algebra which is not commutative or not cocommutative (this 

is the same question because of the finite dimension). We will answer this question in 

this paper; more precisely, we show that if every homogeneous element of strictly pos- 

itive degree is nilpotent, then A is commutative and cocommutative (see Theorem 1). 

Hence, it is an exterior algebra. On the one hand, this gives the answer for the finite- 

dimensional case and on the other hand, we recover a result of Hopf [2] without any 

hypothesis of commutativity (see Corollary 1). 

1. Results 

The main result of this paper is the following theorem. 

As a consequence, we have the following result 

The previous corollary generalizes the result of Hopf [2] who showed that if A is a 

finite-dimensional, commutative, graded, connected Hopf algebra, then it is an exterior 

algebra over generators of odd degree. 

Remark Corollary 1 shows that the dimension of a finite-dimensional, graded, con- 

nected Hopf k-algebra is of the form 2” where II is a positive integer. 

2. Notations 

We denote by 06 a commutative field of characteristic zero, and by (A,m, 11, d,r:,S) 

a graded, connected Hopf k-algebra: 

A=k@A, ‘F;A?;f,-.. 



(i) The coproduct is given by: for all x E A,,, 

A (x ) = .y 11% I + 1 $5;’ x + A + (x ), 

where 

II- I 

A+(x)= c (xx: ‘53x;;_,), 
(=I 

and .Y: E A,, XI:/_; E A,,_;; 

(ii) The product verifies: for all i,,j t k4 

AA, c A,+,; 

(iii) The subspace of primitive elements of A is given by 

P(A)={xtA~A(x)=xSI‘; I + I ax}; 

(iv) The algebra A is commutative if for all homogeneous elements x,~ of A, 

.yv~(-~)l-~ll.,~lc’_y 

where /xl, 1~1 denote the degree of x and y, respectively. 

(v) Let 5 : A ,i;l A + A 8% A be the map defined by T(S, 1x8 ,Y, ) = (- 1 )‘J_Y, 8% xi, where 

.r/, E Ak,k = i.,j, and Aoi’ = T o A. We say that A is cocommutative if A”” = A. 

(vi) The commutator of two homogeneous elements n, h of A is defined by 

[n, h] = ah - (- 1 )‘wm 

(vii) We say that A has a finite number of components if there exists an integer nz 

such that Ax = (0) for all k >m. 

3. Proof of the results 

We proceed in several steps. First, we investigate the subspace of primitive elements 

of A. 

Proof. (1 ) Let a be a homogeneous element of P(A). If Ial is strictly positive and 

even , then (a 8 I )( 1 (3 CI) = (1 8% a)(a 6: I ). Using Newton’s binomial formula, we get 



Since a is nilpotent, there exists a smallest integer 117 such that CP = 0. Suppose m > 2. 

Then, d(u”‘) = 0 implies that 

Now the vectors {c@ s:,:~ u’, I 5 Ii 5 m - 1) are linearly independent. Since 06 is of 

characteristic zero, this is impossible. Thus /?I= 1. which implies that a = 0. 

(2) If a and h are homogeneous elements of P(A). it is well known that [a,/~] is also 

primitive. Since a and h have odd degree, then [LI, h] has even degree; hence [a, h] = 0 

by part (I). 0 

Let us denote by E the subalgebra of A generated by P(A). Since the coproduct is a 

morphism of algebras, it is clear that E is a subcoalgebra. The fact that the antipode S 

is an antimorphism of algebras and that S(x) = -.x- for each element x in P(A) implies 

that E is a Hopf subalgebra of A. We have the following proposition. 

Proof. An element of E is a linear combination of products of primitive elements. 

Using part (2) of Lemma 1 and the relation 

[ah. c] = a[h, c] + (- I y!!~~l [u, (,I/) 

we see that E is commutative. Since E is spanned by primitive elements, the cocom- 

mutativity is clear. So E is a commutative and cocommutative graded, connected Hopf 

algebra over a field of characteristic zero. We conclude by the theorem of Milnor and 

Moore [6]. 0 

The previous proposition will imply Theorem 1 once we have proved that E = A. 
Let us denote by I the augmentation ideal of E 

I= @,I, where E,] = E n A,, 
P> 1 

Suppose that EfA, and let L={I,~A\EI~,(~)EI:~~}. 

Lemma 2. L is not tvnpfj~. 

Proof. Let c be an homogeneous element of A\E (assumed to be non-empty) with 

minimal degree rz and let 



where 0~ Ic:~ <n, 0~ Ic:“,i <n. Now, using the minimality of Ic/ in A\E, we deduce 

that c:, c{:_, are in I, and then c EL. 0 

In the following step, we prove some facts about the set L. 

Proof. By Lemma I. the degree of f is odd, so that, if d+(c) = CfC.) C’ s c”, then 

n([t,C])=[n(r),n(C)]= 1 Xl [t,‘.] + [t,L.] ‘I<’ I +x, 

where A’ = [I IV: t + t 1,~ 1, Et,,, c’ JC?I L “I. Let us show that A’ = 0. First, we remark that 

if a is an homogeneous element, then (- 1 )~“il’~ = (- 1 )I”‘. Thus, 

x-(ty 1 + 1 :\,]t) (ZC%“) -(-l)l”I (ZCW’) (txl 1 + 1 :I’t) 

= C( fc’ ,‘.I, (.‘I +(_,)I+ (;; [(.“) ~ (-,)I’1 ~((_,)I~‘7c’t:Rc”+c’ $ZIC”f) 

= C(I‘ ’ ,$: c” + (_ 1)l”‘lc’ f& t(.“) ~ C((_I)l’liI”“lc’t CL; c” + (_l)l’dC’ >j C”t), 

= -ij+’ ~ (-,)I”1 c’t) ;:;, c” + (_I)l’l CL.’ ,+;, ((-1 )lqc” - (.“f) 

(L’l (( ) 

The last equality holds because c’,c”’ and f are in E which 

Proposition 1. Cl 
is commutative by 

From Lemma I and Proposition 2, we immediately deduce the following. 

Moreover. we have the following. 



Proof. Let c’ be an homogeneous element of L and let C be the subalgebra of A 

generated by c and E. We claim that C is a Hopf subalgebra of A. Indeed, by definition 

of L, d(C) C C 83 C. Then, C is a graded connected sub-bialgebra of A; consequently, 

it is a Hopf subalgebra [7]. Now. Proposition 2 allows us to write every element of C 

as x = 1 a,,?’ with n,, in E; so, if WC denote by Cl the left ideal of C generated by I, 

one easily verifies that CI is a Hopf idcal. which allows us to consider the Hopf 

algebra C/C/. This latter verifies the hypotheses of Lemma I, so that every primitive 

element of C/Cl has odd degree. Let us compute A(c), where (: is the image of c in 

C/Cl. We get 

Since A+(c) E I+:# I, the element A (I’) =O and (_ is primitive and non-zero. Indeed, 

if (: = 0, then c E CI. So, c’ = c,, s,~,I’,,. where .I,, t C and .v:,? E I. Since x,, E C, we can 

write 

Now, each x,,,~ and J‘,( can be written as a sum of homogeneous elements: 

X,,.x = c .Y,,,!,,,. ?‘,i = c .I”!.,. 
I I 

Then, 

c= c &,k,,2?%.,> 
II. i, ,. !? 

Since c # 0, there exists II, i,.j. k such that 

.G,.I;.K~_v,,., # 0 and I(./ = I.%i.i~~l?k,I. 

It follows that. 

ICI =I.~,,.L,l + IV + LrR,I = h,~.,l ++,I + ll’,r.,l. 

Then, k 5 I. If k = 1, then l~‘,~.,l = 0. We get a contradiction because y ,,., E I - {O}. So 

in each term k = 0 and then c E E, which is impossible by the choice of c. Now it is 

clear that 1c.I = (Cl. Hence the degree of c’ is odd. 0 

Proof. It is a trivial consequence of Proposition 3 and Corollary 3. 0 

In the following, we fix an homogeneous element c’ of L. Let P, = { tl,. . , t,,,} be the 

set of all homogeneous primitive elements appearing in the decomposition of c:,c~:_, as 

a linear combination of products of primitive elements. Let E, be the Hopf sub-algebra 



of A spanned by c:,. If we denote by C,. the sub-algebra generated by E,. and c, we 

have the following proposition. 

Proof. Since A((.) E C, i‘i C,. and d(E, ) C C’, a):mC,., then C,. is a sub-bialgebra of A and 

also a Hopf subalgebra since it is graded and connected [7]. The commutativity of E, 

and [t,~.] = 0 for all t in fl. imply that C,. is commutative. Since t and c are nilpotent 

for all t in P,, we conclude that C,. is finite-dimensional. c! 

The following lemma is the key to the proof of Theorem I. 

Proof. Indeed, if A is cocommutative, then C, is commutative and cocommutative; so 

by [6] it is spanned by primitive elements, hence C,. C E. Therefore. c E C, L E, which 

yields a contradiction. 0 

Now we can complete the proof of Theorem I. Since C, is commutative and finite- 

dimensional, we can consider its dual (Cc.)* which is a cocommutative, graded, con- 

nected Hopf algebra. It also satisfies the nilpotency hypothesis because it is finite- 

dimensional. By the previous lemma, Theorem I holds for (C, )* which, therefore, is 

commutative. This implies that C,. is cocommutative. Using again [6], the Hopf algebra 

C’, is generated by its primitive 

we again get a contradiction. It 

over its primitive elements. 0 

elements, then it is a subset of E. But c $ E, hence 

follows that E = A and that A is the exterior algebra 

Since A is finite-dimensional, it has a finite number of components. The fact that the 

product is graded shows that every homogeneous element of strictly positive degree is 

nilpotent. Theorem I implies the result. 0 

Let 

We can apply Theorem I because for all k t { I,. . . ,/I} and all x E Al;, s”+’ E A(,,+, ,k- 

= (0). Consequently. A is an exterior algebra over P(A). If P(A) were infinite-dimen- 

sional, then the exterior algebra over P(A) would have an infinite number of 



components, hence we get a contradiction. Thus, P(A) is finite-dimensional, which 

implies that A is finite-dimensional too. U 
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